JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The ROMP: A Powerful Approach to Synthesize Novel pH-Sensitive Nanoparticles for Tumor Therapy.

Biomolecules 2019 Februrary 13
Fast clearance, metabolism, and systemic toxicity are major limits for the clinical use of anti-cancer drugs. Histone deacetylase inhibitors (HDACi) present these defects, despite displaying promising anti-tumor properties on tumor cells in vitro and in in vivo models of cancer. The specific delivery of anti-cancer drugs into the tumor should improve their clinical benefit by limiting systemic toxicity and by increasing the anti-tumor effect. This paper deals with the synthesis of the polymeric nanoparticle platform, which was produced by Ring-Opening Metathesis Polymerization (ROMP), able to release anti-cancer drugs in dispersion, such as histone deacetylase inhibitors, into mesothelioma tumors. The core-shell nanoparticles (NPs) have stealth properties due to their poly(ethylene oxide) shell and can be viewed as universal nano-carriers on which any alkyne-modified anti-cancer molecule can be grafted by click chemistry. A cleavage reaction of the chemical bond between NPs and drugs through the contact of NPs with a medium presenting an acidic pH, which is typically a cancer tumor environment or an acidic intracellular compartment, induces a controlled release of the bioactive molecule in its native form. In our in vivo syngeneic model of mesothelioma, a highly selective accumulation of the particles in the tumor was obtained. The release of the drugs led to an 80% reduction of tumor weight for the best compound without toxicity. Our work demonstrates that the use of theranostic nanovectors leads to an optimized delivery of epigenetic inhibitors in tumors, which improves their anti-tumor properties in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app