Add like
Add dislike
Add to saved papers

Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands.

Understanding healthcare viral disease transmission and the effect of infection control interventions will inform current and future infection control protocols. In this study, a model was developed to predict virus concentration on nurses' hands using data from a bacteriophage tracer study conducted in Tucson, Arizona, in an urgent care facility. Surfaces were swabbed 2 hours, 3.5 hours, and 6 hours postseeding to measure virus spread over time. To estimate the full viral load that would have been present on hands without sampling, virus concentrations were summed across time points for 3.5- and 6-hour measurements. A stochastic discrete event model was developed to predict virus concentrations on nurses' hands, given a distribution of virus concentrations on surfaces and expected frequencies of hand-to-surface and orifice contacts and handwashing. Box plots and statistical hypothesis testing were used to compare the model-predicted and experimentally measured virus concentrations on nurses' hands. The model was validated with the experimental bacteriophage tracer data because the distribution for model-predicted virus concentrations on hands captured all observed value ranges, and interquartile ranges for model and experimental values overlapped for all comparison time points. Wilcoxon rank sum tests showed no significant differences in distributions of model-predicted and experimentally measured virus concentrations on hands. However, limitations in the tracer study indicate that more data are needed to instill more confidence in this validation. Next model development steps include addressing viral concentrations that would be found naturally in healthcare environments and measuring the risk reductions predicted for various infection control interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app