Add like
Add dislike
Add to saved papers

Interaction of Breast Cancer and Insulin Resistance on PD1 and TIM3 Expression in Peripheral Blood CD8 T Cells.

Epidemiological evidence points to a link between insulin resistance (IR) and breast cancer (BrCA). Insulin plays a role in CD8+ T cells (CD8T) differentiation and function and affects adipocytokines levels. CD8T activity in BrCA is associated with favorable outcome; while PD1 and TIM3 are markers of CD8T exhaustion and play critical roles in the negative regulation of T cell responses. Patients with (BrCA) have high expression levels of PD1 on circulating. Therefore, we hypothesized that BrCA and IR could affect PD1 and/or TIM3 expression on circulating CD8T. We determine PD1 and TIM3 expression on CD8T and analyze the relationship of CD8T phenotype with serum insulin and plasma adipocytokines levels in the different groups. We enrolled four groups of treatment-naive patients: women without neoplasms (Neo-)/without IR (IR-), Neo-/with IR (IR+), BrCa/IR- and BrCa/IR+. We found interactions between BrCA and IR with respect to TIM3 on naïve and central memory (CM) CD8T subsets. Furthermore, BrCA had a greater PD1 + TIM3- CD8T frequency in CD8T subsets than Neo-. IR+ presented a significantly lower PD1 + TIM3- frequency in CD8T subsets compare to Non-IR. In addition, we found a negative correlation between insulin levels, HOMA and frequency of PD1 + TIM3- in CD8T and a positive correlation between adiponectin levels and the frequency PD1 + TIM3- in CD8T. The increased expression of PD1 on different subsets of CD8T from BrCa patients is consistent with immunological tolerance, whereas IR has a contrary effect. IR could have a deleterious role in the activation of CD8T that can be relevant to new BrCa immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app