Add like
Add dislike
Add to saved papers

Low-intensity exercise delays the shivering response to core cooling.

Hypothermia can occur during aquatic exercise despite production of significant amounts of heat by the active muscles. Because the characteristics of human thermoregulatory responses to cold during exercise have not been fully elucidated, we investigated the effect of low-intensity exercise on the shivering response to core cooling in cool water. Eight healthy young men (24 ± 3 yr) were cooled through cool water immersion while resting (rest trial) and during loadless pedaling on a water cycle ergometer (exercise trial). Before the cooling, body temperature was elevated by hot water immersion to clearly detect a core temperature at which shivering initiates. Throughout the cooling period, mean skin temperature remained around the water temperature (25°C) in both trials, whereas esophageal temperature (Tes ) did not differ between the trials ( P > 0.05). The Tes at which oxygen uptake (V̇o2 ) rapidly increased, an index of the core temperature threshold for shivering, was lower during exercise than rest (36.2 ± 0.4°C vs. 36.5 ± 0.4°C, P < 0.05). The sensitivity of the shivering response, as indicated by the slope of the Tes -V̇o2 relation, did not differ between the trials (-441.3 ±177.4 ml·min-1 ·°C-1 vs. -411.8 ± 268.1 ml·min-1 ·°C-1 , P > 0.05). The thermal sensation response to core cooling, assessed from the slope and intercept of the regression line relating Tes and thermal sensation, did not differ between the trials ( P > 0.05). These results suggest that the core temperature threshold for shivering is delayed during low-intensity exercise in cool water compared with rest although shivering sensitivity is unaffected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app