Add like
Add dislike
Add to saved papers

Dietary methionine restriction ameliorates the impairment of learning and memory function induced by obesity in mice.

Food & Function 2019 Februrary 14
Dietary methionine restriction (MR) has been reported to extend lifespan, improve insulin sensitivity, reduce adiposity and inflammation response, and in particular, increase endogenous hydrogen sulfide (H2S) production. H2S is a critical anti-inflammatory molecule in the central nervous system and a gaseous signal molecule that mediates learning and memory function. Hence, the present study aimed to investigate whether MR can ameliorate the impairment of learning and memory function induced by obesity, and to clarify its possible mechanisms. C57BL/6J mice were fed a control diet or a high-fat (HF) diet to induce obesity, and were then fed a control diet (CON group, 4.2% fat, 0.86% methionine), a HF diet (HF group, 24% fat, 0.86% methionine), or an MR diet (MR group, 24% fat, 0.17% methionine) for 16 consecutive weeks. Our results showed that HF-induced obesity impaired learning and memory function, reduced H2S production in the hippocampus, cortex, and plasma, and increased plasma and hippocampal inflammation response in the mice. MR improved the impairment of learning and memory function accompanied by selective modulation of the expression of multiple related genes, reduced plasma and hippocampal inflammatory response, normalized H2S levels in the hippocampus, cortex, and plasma, up-regulated the mRNA and protein expression levels of cystathionine β-synthase in the hippocampus, and reduced hippocampal homocysteine level. These findings suggest that MR can ameliorate the impairment of learning and memory function, likely by increasing H2S production in the hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app