Add like
Add dislike
Add to saved papers

Impact of dimensionality and confinement on the electronic properties of mercury chalcogenide nanocrystals.

Nanoscale 2019 Februrary 14
We demonstrate the growth of 2D nanoplatelets (NPLs) made of a HgTe/CdS heterostructure, with an optical absorption reaching the shortwave infrared range. The material is an interesting platform to investigate the effect of dimensionality (0D vs. 2D) and confinement on the electronic spectrum and carrier dynamics in colloidal materials. We bring consistent evidence for the p-type nature of this material from transport and photoemission measurements. The majority carrier dynamics probed using pump-probe photoemission is found to be mostly dependent on the presence of a confinement barrier at the surface rather than on the material dimensionality. The minority carrier, on the other hand, is strongly affected by the material shape showing a longer lived minority carrier in 2D NPLs compared to their 0D equivalent with a similar band gap. Finally, we test the potential of this material for photodetection in the short-wave infrared range (SWIR) and show that fast photoresponse and detectivity reaching 109 Jones at room temperature can be achieved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app