Add like
Add dislike
Add to saved papers

Variations of the elastic modulus perpendicular to the surface of rubrene bilayer films.

Investigations exploring the inherent mechanical properties of electronic materials have grown rapidly in recent years largely because they are important in developing flexible electronics, organic displays and sensors. However, our understanding of the mechanical properties of organic semiconductors with a thin-film form remains limited. We report herein on an investigation of the structures and related elastic moduli perpendicular to the surface of a rubrene thin film. A rubrene/Si(100) film typically has a cluster-type morphology mainly comprising crystalline nanodomains within the film. We propose a structural bilayer model that can be used to explain the layered nature or characteristics of the rubrene films. As the film thickness is increased, the enhancement in elastic modulus can be attributed to the presence of a soft surface layer on a hard underlayer. Based on four-point probe measurements, the bilayered nature of such materials can be used to characterize their electrical resistive behavior while interfacial roughness is sensitive to the transport paths of conduction electrons. This information is valuable for future applications of organic semiconductors in flexible devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app