Add like
Add dislike
Add to saved papers

Influence of drying processes on the structures, morphology and in vitro release profiles of risperidone-loaded PLGA microspheres.

The purpose of this study was to investigate the influences of drying methods on the risperidone (RIS) release profiles of RIS-loaded PLGA microspheres. These microspheres were fabricated with an O/W emulsion solvent evaporation method. The wet microspheres were dried with freeze drying and vacuum drying methods. The microspheres were mono-dispersed spheres with an average diameter of 100 μm. Studies found that drying methods had great influence on the porosity, morphology, and release profiles of RIS-loaded PLGA microspheres. Specifically, the freeze-dried microspheres had higher porosity (78.46 ± 1.64%) than those vacuum-dried ones (52.45 ± 2.68%), and they showed higher RIS release rates ( p  < 0.05). In the accelerated release tests (45 °C), these microspheres dried under the pressures of 700 mmHg and 200 mmHg gave faster release rates than those ones dried under the pressure of 450 mmHg. Importantly, the accelerated release test (45 °C) had a high correlation with the real-time test (37 °C) ( R 2  > 0.99). These studies exhibited a significance in the precise preparation of RIS-loaded PLGA microspheres.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app