ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Recombinant expression of Crassostrea gigas defensin in Pichia pastoris and its antibacterial activity].

Defensins are endogenous cationic antimicrobial peptides rich in arginine and cysteine residues. They are important immune factors resisting pathogenic bacteria infection for mollusks. The 43 amino acid residues near the carboxyl terminal for Crassostrea gigas defensin (CgD) form its mature peptide region, responsible for the biological activity of CgD. First, two target genes, CgDH⁺ (with 6×His-tag at 3' end) and CgDH- (without 6×His-tag at 3' end) were separated and amplified by RT-PCR with specific primers from Crassostrea gigas mantle. These two target genes were ligated to the expression vector pPICZαA to construct recombinant expression vectors, pPICZαA-CgDH⁺ and pPICZαA-CgDH-, which were transformed into competent Pichia pastoris X-33 cells by electroporation respectively. The recombinant target proteins, CgDH⁺ and CgDH-, were induced for 72 h with 1% methanol at 29 °C and 250 r/min. The recombinant CgDH⁺ (5.78 kDa) was purified by immobilized metal affinity chromatography (IMAC), and identified by MALDI-TOF-TOF analysis, demonstrating that it was the expected target protein. Based on the concentration of the purified product, the estimated yield of recombinant CgDH⁺ was 2.32 mg/L. Antimicrobial assay showed that the culture medium supernatant containing recombinant CgDH⁺ and recombinant CgDH-, respectively, had activities against Staphylococcus aureus and Pseudomonas aeruginosa, indicating that the existence of 6×His tag in the recombinant proteins do not affect their biological activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app