Add like
Add dislike
Add to saved papers

Measurement of microvascular cerebral blood volume changes over the cardiac cycle with ferumoxytol-enhanced T 2 * MRI.

PURPOSE: This feasibility study investigates the non-invasive measurement of microvascular cerebral blood volume (BV) changes over the cardiac cycle using cardiac-gated, ferumoxytol-enhanced T 2 ∗ MRI.

METHODS: Institutional review board approval was obtained and all subjects provided written informed consent. Cardiac gated MR scans were prospectively acquired on a 3.0T scanner in 22 healthy subjects using T 2 ∗ -weighted sequences with 2D-EPI and 3D spiral trajectories. Images were collected before and after the intravenous administration of 2 doses of ferumoxytol (1 mg FE/kg and 4 mg FE/kg). Cardiac cycle-induced R 2 ∗ (1/ T 2 ∗ ) changes (Δ R 2 ∗ ) and BV changes (ΔBV) throughout the cardiac cycle in gray matter (GM) and white matter (WM) were quantified and differences assessed using ANOVA followed by post hoc analysis.

RESULTS: Δ R 2 ∗ was found to increase in a dose-dependent fashion. A significantly larger increase was observed in GM compared to WM in both 2D and 3D acquisitions (P < 0.050). In addition, Δ R 2 ∗ increased significantly (P < 0.001) post versus pre-contrast injection in GM in both T 2 ∗ MRI acquisitions. Mean GM Δ R 2 ∗ derived from 2D-EPI images was 0.14 ± 0.06 s-1 pre-contrast and 0.33 ± 0.13 s-1 after 5 mg FE/kg. In WM, Δ R 2 ∗ was 0.19 ± 0.06 s-1 pre-contrast, and 0.23 ± 0.06 s-1 after 5 mg FE/kg. The fractional changes in BV throughout the cardiac cycle were 0.031 ± 0.019% in GM and 0.011 ± 0.008% in WM (P < 0.001) after 5 mg FE/kg.

CONCLUSION: Cardiac-gated, ferumoxytol-enhanced T 2 ∗ MRI enables characterization of microvascular BV changes throughout the cardiac cycle in GM and WM tissue of healthy subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app