Add like
Add dislike
Add to saved papers

Psychosis risk is associated with decreased resting-state functional connectivity between the striatum and the default mode network.

Psychosis is linked to aberrant salience or to viewing neutral stimuli as self-relevant, suggesting a possible impairment in self-relevance processing. Psychosis is also associated with increased dopamine in the dorsal striatum, especially the anterior caudate (Kegeles et al., 2010). Critically, the anterior caudate is especially connected to (a) the cortical default mode network (DMN), centrally involved in self-relevance processing, and (b) to a lesser extent, the cortical frontoparietal network (FPN; Choi, Yeo, & Buckner, 2012). However, no previous study has directly examined striatal-cortical DMN connectivity in psychosis risk. In Study 1, we examined resting-state functional connectivity in psychosis risk (n = 18) and control (n = 19) groups between (a) striatal DMN and FPN subregions and (b) cortical DMN and FPN. The psychosis risk group exhibited decreased connectivity between the striatal subregions and the cortical DMN. In contrast, the psychosis risk group exhibited intact connectivity between the striatal subregions and the cortical FPN. Additionally, recent distress was also associated with decreased striatal-cortical DMN connectivity. In Study 2, to determine whether the decreased striatal-cortical DMN connectivity was specific to psychosis risk or was related to recent distress more generally, we examined the relationship between connectivity and distress in individuals diagnosed with nonpsychotic emotional distress disorders (N = 25). In contrast to Study 1, here we found that distress was associated with evidence of increased striatal-cortical DMN connectivity. Overall, the present results suggest that decreased striatal-cortical DMN connectivity is associated with psychosis risk and could contribute to aberrant salience.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app