Add like
Add dislike
Add to saved papers

Microencapsulation of phages to analyze their demeanor in physiological conditions.

Folia Microbiologica 2019 Februrary 13
Nowadays, phage therapy emerges as one of the alternative solutions to the problems arising from antibiotic resistance in pathogenic bacteria. Although phage therapy has been successfully applied both in vitro and in vivo, one of the biggest concerns in this regard is the stability of phages in body environment. Within the scope of this study, microencapsulation technology was used to increase the resistance of phages to physiological conditions, and the resulting microcapsules were tested in environments simulating body conditions. For this purpose, Bacillus subtilis, Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis), and Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) phages were isolated from different sources and then microencapsulated with 1.33% (w/v) sodium alginate using a spray dryer to minimize the damage of physiological environment. Stability of microcapsules in simulated gastric fluid and bile salt presence was tested. As a consequence, the maximum titer decrease of microencapsulated phages after 2-h incubation was found to be 2.29 log unit for B. subtilis phages, 1.71 log unit for S. Enteritidis phages, and 0.60 log unit for S. Typhimurium phages, while free phages lost their viability even after a 15-min incubation. Similarly, microencapsulation was found to increase the stability of phages in the bile salt medium and it was seen that after 3 h of incubation, the difference between the titers of microencapsulated phages and free phages could reach up to 3 log unit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app