Add like
Add dislike
Add to saved papers

Attenuation of calmodulin regulation evokes Ca 2+ oscillations: evidence for the involvement of intracellular arachidonate-activated channels and connexons.

Intracellular Са2+ controls its own level by regulation of Ca2+ transport across the plasma and organellar membranes, often acting via calmodulin (CaM). Drugs antagonizing CaM action induce an increase in cytosolic Ca2+ concentration in different cells. We have found persistent Са2+ oscillations in cultured white adipocytes in response to calmidazolium (CMZ). They appeared at [CMZ] > 1 μM as repetitive sharp spikes mainly superimposed on a transient or elevated baseline. Similar oscillations were observed when we used trifluoperazine. Oscillations evoked by 5 μM CMZ resulted from the release of stored Ca2+ and were supported by Са2+ entry. Inhibition of store-operated channels by YM-58483 or 2-APB did not change the responses. Phospholipase A2 inhibited by AACOCF3 was responsible for initial Ca2+ mobilization, but not for subsequent oscillations, whereas inhibition of iPLA2 by BEL had no effect. Phospholipase C was partially involved in both stages as revealed with U73122. Intracellular Са2+ stores engaged by CMZ were entirely dependent on thapsigargin. The oscillations existed in the presence of inhibitors of ryanodine or inositol 1,4,5-trisphosphate receptors, or antagonists of Ca2+ transport by lysosome-like acidic stores. Carbenoxolone or octanol, blockers of hemichannels (connexons), when applied for two hours, prevented oscillations but did not affect the initial Са2+ release. Incubation with La3+ for 2 or 24 h inhibited all responses to CMZ, retaining the thapsigargin-induced Ca2+ rise. These results suggest that Ca2+ -CaM regulation suppresses La3+ -sensitive channels in non-acidic organelles, of which arachidonate-activated channels initiate Ca2+ oscillations, and connexons are intimately implicated in their generation mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app