Add like
Add dislike
Add to saved papers

Early Effects of Hyperbaric Oxygen on Inducible Nitric Oxide Synthase Activity/Expression in Lymphocytes of Type 1 Diabetes Patients: A Prospective Pilot Study.

This study aimed at examining the early effects of hyperbaric oxygen therapy (HBOT) on inducible nitric oxide synthase (iNOS) activity/expression in lymphocytes of type 1 diabetes mellitus (T1DM) patients. A group of 19 patients (mean age: 63 ± 2.1) with T1DM and with the peripheral arterial disease were included in this study. Patients were exposed to 10 sessions of HBOT in the duration of 1 h to 100% oxygen inhalation at 2.4 ATA. Blood samples were collected for the plasma C-reactive protein (CRP), plasma free fatty acid (FFA), serum nitrite/nitrate, and serum arginase activity measurements. Expression of iNOS and phosphorylation of p65 subunit of nuclear factor- κ B (NF κ B-p65), extracellular-regulated kinases 1/2 (ERK1/2), and protein kinase B (Akt) were examined in lymphocyte lysates by Western blot. After exposure to HBOT, plasma CRP and FFA were significantly decreased ( p < 0.001). Protein expression of iNOS and serum nitrite/nitrate levels were decreased ( p < 0.01), while serum arginase activity was increased ( p < 0.05) versus before exposure to HBOT. Increased phosphorylation of NF κ B-p65 at Ser536 ( p < 0.05) and decreased level of NF κ B-p65 protein ( p < 0.001) in lymphocytes of T1DM patients were observed after HBOT. Decreased phosphorylation of ERK1/2 ( p < 0.05) and Akt ( p < 0.05) was detected after HBOT. Our results indicate that exposure to HBO decreased iNOS activity/expression via decreasing phosphorylation of ERK1/2 and Akt followed by decreased activity of NF κ B.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app