JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cortical route for facelike pattern processing in human newborns.

Humans are endowed with an exceptional ability for detecting faces, a competence that, in adults, is supported by a set of face-specific cortical patches. Human newborns, already shortly after birth, preferentially orient to faces, even when they are presented in the form of highly schematic geometrical patterns vs. perceptually equivalent nonfacelike stimuli. The neural substrates underlying this early preference are still largely unexplored. Is the adult face-specific cortical circuit already active at birth, or does its specialization develop slowly as a function of experience and/or maturation? We measured EEG responses in 1- to 4-day-old awake, attentive human newborns to schematic facelike patterns and nonfacelike control stimuli, visually presented with slow oscillatory "peekaboo" dynamics (0.8 Hz) in a frequency-tagging design. Despite the limited duration of newborns' attention, reliable frequency-tagged responses could be estimated for each stimulus from the peak of the EEG power spectrum at the stimulation frequency. Upright facelike stimuli elicited a significantly stronger frequency-tagged response than inverted facelike controls in a large set of electrodes. Source reconstruction of the underlying cortical activity revealed the recruitment of a partially right-lateralized network comprising lateral occipitotemporal and medial parietal areas overlapping with the adult face-processing circuit. This result suggests that the cortical route specialized in face processing is already functional at birth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app