Add like
Add dislike
Add to saved papers

C/EBPβ is a critical mediator of IFN-α-induced exhaustion of chronic myeloid leukemia stem cells.

Blood Advances 2019 Februrary 13
Even in the era of ABL tyrosine kinase inhibitors, eradication of chronic myeloid leukemia (CML) stem cells is necessary for complete cure of the disease. Interferon-α (IFN-α) has long been used for the treatment of chronic-phase CML, but its mechanisms of action against CML stem cells remain unclear. We found that IFN-α upregulated CCAAT/enhancer binding protein β (C/EBPβ) in BCR-ABL-expressing mouse cells by activating STAT1 and STAT5, which were recruited to a newly identified 3' distal enhancer of Cebpb that contains tandemly aligned IFN-γ-activated site elements. Suppression or deletion of the IFN-γ-activated site elements abrogated IFN-α-dependent upregulation of C/EBPβ. IFN-α induced differentiation and exhaustion of CML stem cells, both in vitro and in vivo, in a C/EBPβ-dependent manner. In addition, IFN-α upregulated C/EBPβ and induced exhaustion of lineage- CD34+ cells from CML patients. Collectively, these results clearly indicate that C/EBPβ is a critical mediator of IFN-α-induced differentiation and exhaustion of CML stem cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app