Add like
Add dislike
Add to saved papers

Effects of a valgus unloader brace in the medial meniscectomized knee joint: a biomechanical study.

BACKGROUND: Patients undergoing total or partial arthroscopic meniscectomy for treating traumatic meniscal tears are at greater risk of developing knee osteoarthritis (OA) due to increased mechanical load. The purpose of this study was to evaluate the effects of a valgus unloader brace in the medial meniscectomized knee joint during the gait cycle.

METHODS: A three-dimensional finite element model of the knee joint was developed using the substructures segmented from magnetic resonance images. Experimentally measured forces and moments for one complete gait cycle, without brace and with brace at three different alignment angles (0°, 4°, and 8°), were applied to the finite element model, and the changes in the tibiofemoral contact mechanics were estimated.

RESULTS: The brace in 0°/4°/8° valgus alignment modes reduced the total contact force in the medial compartment by 16%/46%/82% at opposite toe off and 18%/17%/29% at opposite initial contact events, while it increased the total contact force in the lateral compartment by 31%/81%/110% at opposite toe off and 30%/38%/45% at opposite initial contact events, respectively, when compared to the unbraced meniscectomized knee.

CONCLUSIONS: Increasing the valgus alignment from 0° to 4° and 8° resulted in a greater reduction of contact conditions (total contact force, total contact area, peak contact pressure) in the medial compartment and vice versa in the lateral compartment. This decrease in contact conditions in the medial compartment infers enhanced knee joint function due to a valgus unloader brace, which translates to increased knee-related confidence. Results suggest choosing a higher valgus alignment angle could potentially increase the risk for the onset of osteoarthritis in the lateral compartment, and this computational model could be used in validating the effectiveness of braces on joint health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app