Add like
Add dislike
Add to saved papers

Different next-generation sequencing pipelines based detection of tumor DNA in cerebrospinal fluid of lung adenocarcinoma cancer patients with leptomeningeal metastases.

BMC Cancer 2019 Februrary 13
BACKGROUND: The nucleic acid mutation status in intracranial metastasis is markedly significant clinically. The goal of the current study was to explore whether the tumor-associated mutations can be detected by different next-generation sequencing (NGS) pipelines in paired cerebrospinal fluid (CSF) and plasma samples from lung adenocarcinoma (LAC) patients with leptomeningeal metastases (LM).

METHODS: Paired CSF cell free DNA (cfDNA), CSF cells, plasma and formalin-fixed and paraffin-embedded (FFPE) samples of primary tumors were collected from 29 LAC patients with LM to detect the mutations by different NGS pipelines.

RESULTS: DNA libraries were generated successfully for 79 various samples in total for NGS sequencing, of which mutations were detected in 7 plasma samples (24.14%), 12 CSF cfDNA samples (66.67%), and 10 CSF cells (76.9%) samples. For the 26 patients with detected mutations, 8/26(30.77%) had mutations in plasma, which was significantly lower than that those from CSF cfDNA (12/15, 80.00%), CSF cells (10/11, 90.91%) and FFPE samples (13/17, 76.47%). When the input DNA of CSF cells was less than 20 ng, the cHOPE pipeline of NGS identified the most mutations for epidermal growth factor receptor (EGFR).

CONCLUSIONS: NGS-based detection of mutations in cfDNA or cells from CSF provided more information than from plasma samples from LAC patients with LM. In addition, the cHOPE pipeline performed better than the other three NGS pipelines when input DNA from CSF cells was low.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app