Add like
Add dislike
Add to saved papers

Spatial and Temporal Variability in Attenuation of Polar Organic Micropollutants in an Urban Lowland Stream.

Contamination of rivers by trace organic compounds (TrOCs) poses a risk for aquatic ecosystems and drinking water quality. Spatially- and temporally varying environmental conditions are expected to play a major role in controlling in-stream attenuation of TrOCs. This variability is rarely captured by in situ studies of TrOC attenuation. Instead, snap-shots or time-weighted average conditions and corresponding attenuation rates are reported. The present work sought to investigate this variability and factors controlling it by analysis of 24 TrOCs over a 4.7 km reach of the River Erpe (Berlin, Germany). The factors investigated included sunlight and water temperature as well as the presence of macrophytes. Attenuation rate constants in 48 consecutive hourly water parcels were tracked along two contiguous river sections of different characteristics. Section 1 was less shaded and more densely covered with submerged macrophytes compared to section 2. The sampling campaign was repeated after macrophyte removal from section 1. The findings show, that section 1 generally provided more favorable conditions for both photo- and biodegradation. Macrophyte removal enhanced photolysis of some compounds (e.g., hydrochlorothiazide and diclofenac) while reducing the biodegradation of metoprolol. The transformation products metoprolol acid and valsartan acid were formed along the reach under all conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app