Add like
Add dislike
Add to saved papers

Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells.

Cells 2019 Februrary 12
Three-dimensional (3D) cell cultures allow the mimic of functions of living tissues andprovide key information encoded in tissue architecture. Considered the pivotal role of epithelial-tomesenchymaltransition (EMT) in carcinoma progression, including prostate cancer (PCa), weaimed at investigating the effect of the 3D arrangement on the expression of some key markers ofEMT in cultured human prostate cancer (PCa) cells, to better understand PCa cell behavior. PC3 andDU145 PCa cells were cultured in RPMI cell culture medium either in 2D-monolayers or in 3Dspheroids.The main EMT markers E-cadherin, N-cadherin, α-smooth muscle actin (αSMA),vimentin, Snail, Slug, Twist and Zeb1 were evaluated by confocal microscopy, real-time PCR andWestern blot. Confocal microscopy revealed that E-cadherin was similarly expressed at the cellboundaries on the plasma membrane of PCa cells grown in 2D-monolayers, as well as in 3Dspheroids,but resulted up-regulated in 3D-spheroids, compared to 2D-monolayers, at the mRNAand protein level. Moreover, markers of the mesenchymal phenotype were expressed at very lowlevels in 3D-spheroids, suggesting important differences in the phenotype of PCa cells grown in 3Dspheroidsor in 2D-monolayers. Considered as a whole, our findings contribute to a clarification ofthe role of EMT in PCa and confirm that a 3D cell culture model could provide deeper insight intothe understanding of the biology of PCa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app