COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Tailoring novel soft nano-vesicles 'Flexosomes' for enhanced transdermal drug delivery: Optimization, characterization and comprehensive ex vivo - in vivo evaluation.

The transdermal route is a convenient non-invasive way for drug delivery, however, the hydrophobic compact nature of stratum corneum (SC) forms an obstacle hindering the diffusion of drugs particularly hydrophilic ones. Hence, the purpose of this study was to develop novel soft nano-vesicles, entitled Flexosomes, amalgamating two penetration enhancers, ethanol and one edge activator (EA) from various types and different hydrophilic-lipophilic balances. The tailored vesicles were loaded with tropisetron hydrochloride (TRO), a potent highly-soluble anti-emetic, and compared with ethosomes. Aiming to preclude the formation of rigid non-deformable mixed micelles, all critical parameters; EA type, phosphatidylcholine-to-EA molar ratio, and cholesterol concentration, were optimized proving their influences on vesicle-to-micelle transitions. The prepared formulations were characterized in terms of visual inspection, particle size, polydispersity, zeta potential, turbidity measurements, entrapment efficiency, and vesicle morphology. The permeation mechanisms were assessed by differential scanning calorimetry on isolated SC. The modified vesicles, based on ethanol and either vitamin E or PEGylated castor oil derivatives exhibited the highest transdermal fluxes confirmed by a deeply tracking to dermis using confocal laser microscopy. Both vesicles demonstrated higher bioavailability relative to ethosomes, topical and oral aqueous solutions. The findings endorsed the effectiveness of tailored nano-vesicles in boosting TRO skin transport suggesting their applicability with various drug entities for enhanced transdermal delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app