Add like
Add dislike
Add to saved papers

Formoterol counteracts the inhibitory effect of cigarette smoke on glucocorticoid-induced leucine zipper (GILZ) transactivation in human bronchial smooth muscle cells.

Cigarette smokers with asthma and chronic obstructive pulmonary disease (COPD) are less responsive to glucocorticoids (GCs). The anti-inflammatory action of GCs depends also on their ability to transactivate genes such as GC-induced leucine zipper (GILZ). We investigated the effects of aqueous cigarette smoke extract (CSE) on GILZ transactivation evoked by 17-beclomethasone monopropionate (BMP) or fluticasone propionate (FP) in the presence or absence of the long acting β2-adrenoceptor agonist (LABA) bronchodilator formoterol or salmeterol in human primary cultures of human bronchial smooth muscle cells (HBSMC). We monitored GC receptor Ser211 phosphorylation by western blot analysis and GC receptor nuclear translocation by immunostaining followed high-content imaging analysis. BMP, as well as FP, induced GILZ expression in a concentration-dependent manner (EC50 of 0.87 and 0.16 nM respectively). Pre-incubation with CSE inhibited GC-evoked GILZ transactivation (>50%), GC receptor Ser211 phosphorylation and nuclear translocation. Both formoterol and salmeterol counteracted the effect of CSE on GC-induced GILZ expression but not on nuclear translocation or phosphorylation. The effect of formoterol was mimicked by the cAMP-elevating agent forskolin and blocked by ICI 118,551, a selective β2-adrenoceptor antagonist. Pre-incubation with TNF-α also reduced GC-evoked GILZ transactivation but was not counteracted by formoterol undercovering a different responsiveness to LABAs of TNF-α in comparison to CSE. In sum, CSE inhibits GC-evoked transactivation of GILZ and such effect is counteracted by LABAs, through β2-adrenoceptors and a cAMP-dependent mechanism. This study sheds light on a mechanism underlying complementary interactions between LABAs and inhaled GCs that could be relevant in smokers with asthma and COPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app