Add like
Add dislike
Add to saved papers

Thermoelectric Performance of 2D Tellurium with Accumulation Contacts.

Nano Letters 2019 Februrary 13
Tellurium (Te) is an intrinsically p-type doped narrow bandgap semiconductor with excellent electrical conductivity and low thermal conductivity. Bulk trigonal Te has been theoretically predicted and experimentally demonstrated to be an outstanding thermoelectric material with high value of thermoelectric figure-of-merit ZT. In view of the recent progress in developing synthesis route of two-dimensional (2D) tellurium thin films as well as the growing trend of exploiting nanostructures as thermoelectric devices, here for the first time we report excellent thermoelectric performance of tellurium nanofilms, with room temperature power factor of 31.7 μW/cm∙K2 and ZT value of 0.63. To further enhance the efficiency of harvesting thermoelectric power in nanofilm devices, thermoelectrical current mapping was performed with a laser as a heating source, and we found high work function metals such as palladium can form rare accumulation-type metal-to-semiconductor contacts to 2D Te, which allows thermoelectrically generated carriers to be collected more efficiently. High-performance thermoelectric 2D Te devices have broad applications as energy harvesting devices or nanoscale Peltier coolers in microsystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app