Add like
Add dislike
Add to saved papers

Prediction of water intake to Bos indicus beef cattle raised under tropical conditions.

Water is the most important nutrient in animal nutrition; however, water intake is rarely measured. The objective of this study was to determine whether previously published water intake (WI) equations for beef cattle would accurately predict WI from four experiments conducted under tropical conditions. The experiments were conducted from 2013 to 2015. Nellore (Bos indicus) growing bulls (Exps. 1, 2, and 3) and heifers (Exp. 4) were used in the feedlot trials. In all experiments, animals were fed for ad libitum DMI. The WI, animal performance, diet composition, and environmental data were collected. The prediction of WI using the current published WI equations was evaluated by regressing predicted and measured WI values. The regression was evaluated using the two-hypothesis test: H0: β0 = 0 and H0: β1 = 1 and Ha: not H0. If both null hypotheses were not rejected, it was concluded that the tested equation accurately estimated WI. To develop a WI prediction equation based on the input variables, a leave-one-out cross-validation method was proposed. The proposed equation was evaluated using similar methodology described above. All previously published eight equations overestimated WI of cattle used in the four experiments conducted in southeast Brazil. A possible explanation for the overestimate of WI is that previously published WI equations were generated from data collected from predominantly Bos taurus cattle raised under temperate climates. From the data collected from experiments conducted with Nellore cattle in southeast Brazil, the proposed equation (WI = 9.449 + 0.190 × MBW + 0.271 × TMAX -0.259 × HU + 0.489 × DMI, where the MBW is the metabolic BW (kg0.75), TMAX is the maximum temperature (°C), HU is the humidity (%) and DMI in kg/d), more accurately to predicts WI of cattle raised under tropical conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app