Add like
Add dislike
Add to saved papers

Gag-protease coevolution shapes the outcome of Lopinavir-inclusive treatment regimens in chronically infected HIV-1 subtype C patients.

Bioinformatics 2019 Februrary 13
Motivation: Commonly, protease inhibitor failure is characterized by the development of multiple protease resistance mutations (PRMs). While the impact of PRMs on therapy failure are understood, the introduction of Gag mutations with protease remains largely unclear.

Results: Here, we utilized phylogenetic analyses and Bayesian network learning as tools to understand Gag-protease coevolution and elucidate the pathways leading to Lopinavir failure in HIV-1 subtype C infected patients. Our analyses indicate that while PRMs coevolve in response to drug selection pressure within protease, the Gag mutations added to the existing network while specifically interacting with known Lopinavir failure PRMs. Additionally, the selection of mutations at specific positions in Gag-protease suggests that these coevolving mutational changes occurs to maintain structural integrity during Gag cleavage.

Supplementary information: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app