Add like
Add dislike
Add to saved papers

A Plasmon-Mediated Electron Emission Process.

ACS Nano 2019 Februrary 13
Light-driven electron emission plays an important role in modern optoelectronic devices. However, such a process usually requires a light field either with a high intensity or a high frequency, which is not favor for its implementations and difficult for its integrations. To solve these issues, we propose to combine plasmonic nanostructures with nano-electron-emitters of low work function. In such a heterostructure, hot-electrons generated by plasmon resonances upon light excitation can be directly injected into the adjacent emitter, which can subsequently be emitted into the vacuum. Electron emission of high efficiency can be obtained with light field of moderate intensities and visible wavelengths, which is a plasmon-mediated electron emission (PMEE) process. We have demonstrated our proposed design using a gold-on-graphene (Au-on-Gr) nanostructure, which can have electron emission with light intensity down to 73 mW·cm-2 . It should be noted that the field electron emission is not involved in such a PMEE process. This proposal is of interest for applications including cold-cathode electron sources, advanced photocathodes, and micro- and nano-electronic devices relying on free electrons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app