Add like
Add dislike
Add to saved papers

Bioinspired Shear Flow-Driven Layer-by-Layer in situ Self-Assembly.

ACS Nano 2019 Februrary 13
Layer-by-layer (LbL) assembly is widely applied as a coating technique for nanoscale control of architecture and related properties. However, its translational applications are limited by the time-consuming and laborious nature of the process. Inspired by the blood clotting process, herein, we develop a shear flow-driven LbL (SF-LbL) self-assembly approach that accelerates the adsorption rate of macromolecules by mechanically configuring the polymer chain via a coil-stretch transition, which effectively simplifies and speeds the diffusion-controlled assembly process. The structural characteristics and surface homogeneity of the SF-LbL films are improved, and diverse three-dimensional structures can be achieved. Functional SF-LbL-assembled surfaces for corneal modification are successfully fabricated, and the surface of wounded rat corneas and skin can be directly decorated in situ with SF-LbL nanofilms due to the advantages of this approach. Furthermore, in situ SF-LbL self-assembly has promise as a simple approach for wound dressing for interventional therapeutics in the clinic, as illustrated by the successful in situ fabrication of drug-free layers consisting of chitosan and heparin on the dorsal skin of diabetic mice to rescue defective wound healing. This bioinspired self-assembly approach is expected to provide a robust and versatile platform to explore the surface engineering of nanofilms in science, engineering, and medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app