Add like
Add dislike
Add to saved papers

Enhanced mesenchymal stem cell proliferation through complexation of selenium/titanium nanocomposites.

The main target of this work was to explore the proliferative impact of selenium dioxide nanoparticles (SeO2 ) and selenium dioxide/titanium dioxide nanocomposites (Se/Ti (I), (II) and (III)) on mesenchymal stem cells (MSCs). For this purpose, SeO2 and Se/Ti (I), (II) and (III) were prepared by facile one step method and characterized by transmission electron microscopy (TEM), Zetasizer, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) along with energy-dispersive X-ray spectrometry (EDX) with reference to SeO2 nanoparticles. Also, MSCs were isolated from rat bone marrow (BM-MSCs) and adipose tissue (ADSCs), propagated and characterized by flow cytometry. Thereafter, the proliferative effect of the fabricated nanomaterials was investigated by MTT assay. The TEM and DLS results, revealed that the average particle size of the suggested nanomaterials was in nanoscale. XRD pattern showed well crystalline structure for SeO2 nanoparticles and Se/Ti (I), (II) and (III) nanocomposites; the decreasing of the crystalline phase was observed by increasing the wt% of TiO2 . The designed nanomaterials showed proliferative effects on MSCs with the most prominent effect exerted by 2 µg/ml of Se/Ti (III) and 5 µg/ml of Se/Ti (II) for ADSCs and 20 µg/ml of Se/Ti (II) and 10 µg/ml of Se/Ti (III) for BM-MSCs. Therefore, these newly designed nanomaterials have a promising influence on MSCs proliferation and they are recommended to be utilized in the filed of tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app