Add like
Add dislike
Add to saved papers

A Role for Postsynaptic Density 95 and its Binding Partners in Models of Traumatic Brain Injury.

Journal of Neurotrauma 2019 Februrary 13
Postsynaptic density 95 (PSD-95), the major scaffold protein at excitatory synapses, plays a major role in mediating intracellular signaling by synaptic N-methyl-D-aspartate (NMDA) type glutamate receptors. Despite the fact that much is known about the role of PSD-95 in NMDA-mediated toxicity, less is known about its role in mechanical injury, and more specifically, in traumatic brain injury. Given that neural circuitry is disrupted after TBI and that PSD-95 and its interactors end-binding protein 3 (EB3) and adenomatous polyposis coli (APC) shape dendrites, we examined whether changes to these proteins and their interactions occur after brain trauma. Here, we report that total levels of PSD-95 and the interaction of PSD-95 with EB3 increase at 1 and 7 days after moderate CCI, but these changes do not occur after mild injury. Since changes occur to PSD-95 following brain trauma in vivo, we next considered the functional consequences of PSD-95 alterations in vitro. Rapid deformation of cortical neurons leads to neuronal death 72h after injury, but this outcome is not dependent on PSD-95 expression. However, disruptions in dendritic arborization following stretch injury in vitro require PSD-95 expression, and these changes in arborization can be mimicked with expression of PSD-95 mutants lacking the second PDZ domain. Thus, PSD-95 and its interactors may serve as therapeutic targets for repairing dendrites after TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app