Add like
Add dislike
Add to saved papers

Profiles analysis reveals circular RNAs involving zebrafish physiological development.

Recent studies have found that known functions of circular RNAs (circRNAs) include sequestration of microRNAs (miRNAs) or proteins, modulation of transcription and interference with splicing, and even translation to produce polypeptides. The zebrafish model is also demonstrably similar to humans in many studies. To explore the changes in circRNAs during embryonic development and to further research the mechanism of action of circRNAs in development-related diseases, Zebrafish embryos at the blastula period, gastrula period, segmentation period, throat stage, and incubation period were collected. Illumina deep-sequencing technology and CircRNA Identifier (CIRI) algorithm were used to detect circRNAs. In total, we identified 1,028 circRNAs (junction reads ≥5 and p < 0.05). Considering that the function of circRNAs is related to host genes, a bioinformatics analysis revealed these differentially expressed host genes are involved in NOTCH signaling pathways, cardiovascular system development, retinal ganglion cell axon guidance, and so on. Moreover, circRNAs can participate in biological regulation through the function of miRNA sponges. TargetScan and miRanda were used to predict 73 miRNAs binding to circRNAs such as miR-19b, miR-124, and so on. Some miRNAs play important roles in embryogenesis. The peak expression of circRNAs is distributed at different time points, suggesting that it may be involved in embryogenesis at different stages. Our study provides a foundation for understanding the dynamic regulation of circRNA transcriptomes during embryogenesis and identifies novel key circRNAs that might control embryonic development in a zebrafish model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app