Add like
Add dislike
Add to saved papers

Adaptive Bayesian label fusion using kernel-based similarity metrics in hippocampus segmentation.

The effectiveness of brain magnetic resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of associated tissues or anatomical structures. We introduce an enhanced brain segmentation approach of Bayesian label fusion that includes the construction of adaptive target-specific probabilistic priors using atlases ranked by kernel-based similarity metrics to deal with the anatomical variability of collected MRI data. In particular, the developed segmentation approach appraises patch-based voxel representation to enhance the voxel embedding in spaces with increased tissue discrimination, as well as the construction of a neighborhood-dependent model that addresses the label assignment of each region with a different patch complexity. To measure the similarity between the target and training atlases, we propose a tensor-based kernel metric that also includes the training labeling set. We evaluate the proposed approach, adaptive Bayesian label fusion using kernel-based similarity metrics, in the specific case of hippocampus segmentation of five benchmark MRI collections, including ADNI dataset, resulting in an increased performance (assessed through the Dice index) as compared to other recent works.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app