Add like
Add dislike
Add to saved papers

An in vitro comparison of the effect of various surface treatments on the tensile bond strength of three different luting cement to zirconia copings.

Aim: The aim of this study was to evaluate and compare the tensile bond strength of zirconia copings subjected to three different surface treatment methods and cemented with three different luting agents.

Materials and Methods: Seventy-two extracted maxillary premolar teeth were prepared to receive zirconia copings milled using computer-aided design/computer-aided manufacturing technology, which were divided into 9 groups of 8 specimens each. Three surface treatment protocols such as hydrofluoric acid etch treatment, air abrasion with 110-μm aluminum oxide (Al2 O3 ), and tribochemical silica coating (Rocatec) treatment were carried out, and copings were cemented with three luting agents such as resin-modified glass ionomer cement (RelyX luting 2), 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) resin cement (Panavia F 2.0) and 4-methacryloxyethyl trimellitic acid (4-META) resin cement (G-Cem). Tensile bond strength of the copings was tested in a universal testing machine. Zirconia copings fabricated on the prepared extracted tooth. After the three surface treatments and cementing the zirconia crowns with three luting agents tensile bond strength is tested. The mean and standard deviations (SD) were calculated for the nine groups using one-way ANOVA, followed by Tukey-Kramer post hoc using the SPSS software.

Results: The ANOVA test showed that the measured mean bond strength values were 4.22 MPa (tribochemicalsilica coating and MDP resin), 2.71 MPa (air abrasion and MDP resin), 2.61 MPa (tribochemical treatment with META), and 0.66 MPa (RelyX with air abrasion). According to the pairwise comparison of Tukey's honestly significant difference test, significant differences were exhibited among all the groups ( P < 0.05).

Conclusion: Tribochemical silica coating in combination with 10-MDP and 4-META adhesive resins provided the maximum bonding for zirconia copings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app