Add like
Add dislike
Add to saved papers

STAT3 Phosphorylation Mediating DMSO's Function on Fetal Cardiomyocyte Proliferation with Developmental Changes.

Endogenous cardiac regeneration has been focused for decades as a potential therapy for heart diseases with cell loss, and dimethyl sulfoxide (DMSO) has been proposed as a treatment for many diseases. In this study, we aimed to investigate the function of DMSO on fetal cardiomyocyte proliferation. By tracing BrdU+ /α actinin+ cells or Ki67+ /α actinin+ cells with immunohistochemical staining, we found that DMSO remarkably promoted fetal cardiomyocytes proliferation, and at the late developmental stage (LDS), such effects were more efficient than that at early developmental stage (EDS). Western blot data revealed a significant increase in STAT3 phosphorylation under DMSO treatments at LDS, while not at EDS. Consistently, STAT3 phosphorylation blocker STA21 could greatly reverse DMSO's function at LDS whereas hardly at EDS. Moreover, hearts at the EDS had less total STAT3 protein, but relatively much higher level of phosphorylated STAT3. This suggests that DMSO promote fetal cardiomyocytes proliferation, and STAT3 phosphorylation play a pivotal role in DMSO's function. With maturation, DMSO exerted a better ability to favor cardiomyocyte proliferation depending on STAT3 phosphorylation. Therefore, DMSO could serve as an effective, economic, and safe therapy for heart diseases with cell loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app