Add like
Add dislike
Add to saved papers

Protein stability of p53 targets determines their temporal expression dynamics in response to p53 pulsing.

Journal of Cell Biology 2019 Februrary 12
In response to DNA damage, the transcription factor p53 accumulates in a series of pulses. While p53 dynamics play a critical role in regulating stress responses, how p53 pulsing affects target protein expression is not well understood. Recently, we showed that p53 pulses generate diversity in target mRNA expression dynamics; however, given that mRNA and protein expression are not necessarily well correlated, it remains to be determined how p53 pulses impact target protein expression. Using computational and experimental approaches, we show that target protein decay rates filter p53 pulses: Distinct target protein expression dynamics are generated depending on the relationship between p53 pulse frequency and target mRNA and protein stability. Furthermore, by mutating the targets MDM2 and PUMA to alter their stabilities, we show that downstream pathways are sensitive to target protein decay rates. This study delineates the mechanisms by which p53 dynamics play a crucial role in orchestrating the timing of events in the DNA damage response network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app