Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Comparative analysis of the interaction of mono-, dis-, and tris-azo food dyes with egg white lysozyme: A combined spectroscopic and computational simulation approach.

Food Chemistry 2019 June 31
Egg white lysozyme plays an important role in the processing of high value-added poultry products. Considering its applications in the food industry, lysozyme could interact with other food additives, thereby impacting their performance. The present study comparatively investigated the interaction and orientation of the mono-, dis-, and tris-azo food dyes with egg white lysozyme. Allura red AC, brilliant black PN and direct brown 1 bound to lysozyme through a static quenching mechanism with 105 magnitude binding constants. The binding affinity, mainly driven by hydrogen bonds and van der Waals forces, follows the order: direct brown 1 > brilliant black PN > allura red AC. Based on structural and computational analysis, the addition of the monoazo/disazo/trisazo dye led to differing degrees of lysozyme unfolding and numbers of azo groups. The type of substituents on the structures has momentous influence on the transportation and distribution of food dyes to egg white lysozyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app