Add like
Add dislike
Add to saved papers

Transcriptional response of murine bone marrow cells to total-body carbon-ion irradiation.

The need to understand the health effects of heavy ion irradiation is motivated by the use of this modality in radiotherapy and by the potential for exposure during space missions. We have studied the effects of carbon-ion total-body irradiation on the hematopoietic system of the mouse and, in particular, the transcriptional response of bone marrow (BM) cells. Carbon-ion irradiation caused BM cell DNA damage, apoptosis, elevated ROS, and myelosuppression. Transcriptomic analysis showed that overall gene expression in irradiated BM cells differed significantly from the controls. Of 253 genes that were modulated, 192 were up-regulated and 61 down-regulated. Gene ontology analysis showed that the modulated genes are involved in DNA damage response signaling, DNA repair, apoptosis, and the immune response. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these functions are regulated by the p38 MAPK, TNF, and apoptosis pathways. These findings indicate pathways that may be involved in protection against carbon ion radiation injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app