Add like
Add dislike
Add to saved papers

Preparation and In Vitro Cellular Uptake Assessment of Multifunctional Rubik-Like Magnetic Nano-Assemblies.

Through self-assembly of nanoparticles into high-order and stable structures of cubic clusters, high drug-loading rubik-like magnetic nano-assemblies (MNAs), possessing folic acid targeting and strong magnetism-enhanced cellular uptake capabilities, were built. In this study, the core of the cubic drug assemblies consisted of four monodisperse superparamagnetic iron oxide nanoparticles coated with layers of oleic acid (Fe₃O₄@OA), simultaneously encapsulating fluorescein, and Paclitaxol (Flu-MNAs and PTX-MNAs) for imaging and therapeutic applications. To enable preferential tumor cellular uptake by the nanocarriers, the outermost layer of Fe₃O₄ was functionalized with the new dual-oleic acid-polyethylene glycol-folic acid polymer (FA-PEG-Lys-OA₂) as a "shell." The drug carriers exhibited excellent stability and biocompatibility, and showed high drug loading and excellent magnetic response In Vitro . Furthermore, preliminary evaluations of the drug carriers with Hela cells showed effective cellular targeting capability. In addition, the cubic assemblies enhanced anticancer efficiency for Hela cells compared to bare drugs. Especially, the applied external magnetic field further improved the uptake of the vectors, and thereby enhanced the inhibitory effect. In brief, all these results suggested that cubic assemblies could serve as potential strategies for targeted anticancer therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app