Add like
Add dislike
Add to saved papers

Preparation and Characterization of Poly(δ-Valerolactone)/TiO 2 Nanohybrid Material with Pores Interconnected for Potential Use in Tissue Engineering.

Materials 2019 Februrary 11
Titanium dioxide/poly(δ-valerolactone) (TiO₂/Pδ-VL) nanohybrid material containing interconnected pores with sizes in the range 80⁻150 μm were prepared by the solvent casting and polymer melting routes, and the dispersion of the TiO₂ nanofiller in the Pδ-VL matrix and its adhesion were characterized by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. A significant depression in the glass transition temperature ( T g ) and melting temperature ( T m ) values were revealed for the polymer nanocomposites prepared by the solvent casting technique. For the potential application of the prepared materials in the biomedical domain, complementary analyses were performed to examine the dynamic mechanical properties, and cell adhesion (using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay), and the results obtained for the samples prepared by the two methods were compared. Interconnected pores were successively produced in the new material by employing naphthalene microparticles as a porogen for the first time, and the results obtained were very promising.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app