Add like
Add dislike
Add to saved papers

Difunctional chitosan-stabilized Fe/Cu bimetallic nanoparticles for removal of hexavalent chromium wastewater.

Bimetallic Fe/Cu nanoparticles were successfully stabilized by chitosan used for remediating hexavatlent chromium contaminated wasterwater. However, the over-loaded chitosan on the surface of Fe/Cu particles limited the Cr(VI) reduction due to the occupation of the surface reactive sites. Weighing the colloid stability and the reduction reactivity, the optimal dosage of chitosan is 2.0 wt% and the optimal Cu doping dosage is 3.0 wt%. SEM and TEM images showed that the chitosan-stabilized Fe/Cu bimetallic nanoparticles (CS-Fe/Cu nanoparticles) were uniformly dispersed, which had loose and porous surface. FTIR characterization showed that the binding sites of nZVI and chitosan. XRD demonstrated that the presence of copper and chitosan did not change the existence form of zero-valent iron. Most importantly, the contribution of chitosan and Cu in the removal mechanism was studied by the reduction experiments and the XPS analysis. On the one hand, chitosan could effectively combine with Cr(VI) due to chelation, on the other hand, Cu played an important role in the precipitation and coprecipitation phenomena. These findings indicate that CS-Fe/Cu has the potential to be a promising material for wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app