Add like
Add dislike
Add to saved papers

Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach.

Tuberculosis (TB) is a major global health challenge. It has been afflicting human for thousands of years and is still severely affecting a huge population. The etiological agent of the disease is Mycobacterium tuberculosis (MTB) that survives in the human host in latent, dormant, and non-replicative state by evading the immune system. It is one of the leading causes of infection related death worldwide. The situation is exacerbated by the massive increase in the resistant strains such as multi-drug resistant TB (MDR-TB) and extensive drug-resistant TB (XDR-TB). The resistance is as severe that it resulted in failure of the current chemotherapy regimens (i.e. anti-tubercular drugs). It is therefore imperative to discover the new anti-tuberculosis drug targets and their potential inhibitors. Current study has made the use of in silico approaches to perform the comparative metabolic pathway analysis of the MTBXDR1219 with the host i.e. H. sapiens. We identified several metabolic pathways which are unique to pathogen only. By performing subtractive genomic analysis 05 proteins as potential drug target are retrieved. This study suggested that the identified proteins are essential for the bacterial survival and non-homolog to the host proteins. Furthermore, we selected glucosyl-3-phosoglycerate phosphatase (GpgP, EC 5.4.2.1) out of the 05 proteins for molecular docking analysis and virtual screening. The protein is involved in the biosynthesis of methylglucose lipopolysaccharides (MGLPs) which regulate the biosynthesis of mycolic acid. Mycolic acid is the building block of the unique cell wall of the MTB which is responsible for the resistance and pathogenicity. A relatively larger library consisting of 10,431 compounds was screened using AutoDock Vina to predict the binding modes and to rank the potential inhibitors. No potent inhibitor against MTB GpgP has been reported yet, therefore ranking of compounds is performed by making a comparison with the substrate i.e. glucosyl-3-phosphoglycerate. The obtained results provide the understanding of underlying mechanism of interactions of ligands with protein. Follow up study will include the study of the Protein-Protein Interactions (PPIs), and to propose the potential inhibitors against them.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app