Add like
Add dislike
Add to saved papers

A hybrid model for spatiotemporal forecasting of PM 2.5 based on graph convolutional neural network and long short-term memory.

Increasing availability of data related to air quality from ground monitoring stations has provided the chance for data mining researchers to propose sophisticated models for predicting the concentrations of different air pollutants. In this paper, we proposed a hybrid model based on deep learning methods that integrates Graph Convolutional networks and Long Short-Term Memory networks (GC-LSTM) to model and forecast the spatiotemporal variation of PM2.5 concentrations. Specifically, historical observations on different stations are constructed as spatiotemporal graph series, and historical air quality variables, meteorological factors, spatial terms and temporal attributes are defined as graph signals. To evaluate the performance of the GC-LSTM, we compared our results with several state-of-the-art methods in different time intervals. Based on the results, our GC-LSTM model achieved the best performance for predictions. Moreover, evaluations of recall rate (68.45%), false alarm rate (4.65%) (both of threshold: 115 μg/m3 ) and correlation coefficient R2 (0.72) for 72-hour predictions also verify the feasibility of our proposed model. This methodology can be used for concentration forecasting of different air pollutants in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app