Add like
Add dislike
Add to saved papers

Periostin/β1integrin interaction regulates p21-activated kinases in valvular interstitial cell survival and in actin cytoskeleton reorganization *¶.

The matricellular protein periostin (PN) promotes postnatal valve remodeling and maturation. Incomplete remodeling of the valve can trigger degenerative processes that lead to a myxomatous phenotype that includes loss of PN. However, signaling pathways involved that link valvular-interstitial-fibroblast cells (VICs) to proliferation, migration and actin remodeling functions are unclear. The p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements and cell proliferation/adhesion/migration functions in a variety of cellular contexts, including normal cells and cancer cells. This study shows that Pak1, but not Pak2 and Pak4, is a critical mediator of VIC survival and actin organization, and that the molecular signaling regulating actin-remodeling is initiated upon PN/beta-integrin-induced phosphorylation of the focal-adhesion-kinase (Fak) (Y397). Molecular and pharmacological inhibition of key components of PN/Fak/Akt1 signaling abolished the PN-induced actin polymerization and the activation of mTOR, p70S6K and Pak1. Similarly, blocking mTOR inhibited p70S6K, Pak1 phosphorylation and consequently actin-polymerization. Accordingly, inhibiting p70S6K blocked Pak1 phosphorylation and actin polymerization, and subsequently inhibited adhesion and growth of VICs. Periostin-induced Akt1 activation of Pak1 is independent of Cdc42 and Rac1 GTPases, and Akt1 is both downstream and upstream of Pak1. Further, the PN-Pak1-induced Akt1 protects cells from apoptosis through suppression of transcriptional activation of Forkhead-Transcription-Factor (FKHR). In contrast, kinase deficient Pak1 increases apoptosis by increasing FKHR-mediated transcriptional activation. These studies define new functional significance of PN-Fak-Akt1-Pak1 signaling that at least partly regulates Akt1-induced actin polymerization and FKHR-mediated transcriptional activation, which may eventually regulate the mature-valve-leaflet remodeling function, and also FKHR-mediated transcriptional activation for pro-survival of VICs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app