Add like
Add dislike
Add to saved papers

Characterization of Viability of the Lichen Buellia frigida After 1.5 Years in Space on the International Space Station.

Astrobiology 2019 Februrary
The lichen Buellia frigida was exposed to space and simulated Mars analog conditions in the Biology and Mars Experiment (BIOMEX) project operated outside the International Space Station (ISS) for 1.5 years. To determine the effects of the Low Earth Orbit (LEO) conditions on the lichen symbionts, a LIVE/DEAD staining analysis test was performed. After return from the ISS, the lichen symbionts demonstrated mortality rates of up to 100% for the algal symbiont and up to 97.8% for the fungal symbiont. In contrast, the lichen symbiont controls exhibited mortality rates of 10.3% up to 31.9% for the algal symbiont and 14.5% for the fungal symbiont. The results performed in the BIOMEX Mars simulation experiment on the ISS indicate that the potential for survival and the resistance of the lichen B. frigida to LEO conditions are very low. It is unlikely that Mars could be inhabited by this lichen, even for a limited amount of time, or even not habitable planet for the tested lichen symbionts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app