Add like
Add dislike
Add to saved papers

Non-Polyamide Based Nanofiltration Membranes Using Green Metal-Organic Coordination Complexes: Implications for the Removal of Trace Organic Contaminants.

Polyamide-based thin film composite (TFC) membranes are generally optimized for salt rejection but not for the removal of trace organic contaminants (TrOCs). The insufficient rejection of TrOCs such as endocrine disrupting compounds (EDCs) by polyamide membranes can jeopardize product water safety in wastewater reclamation. In this study, we report a novel non-polyamide membrane chemistry using green tannic acid-iron (TA-Fe) complexes to remove TrOCs. The nanofiltration membrane formed at a TA-Fe molar ratio of 1:3 (TA-Fe3) had a continuous thin rejection layer of 10-30 nm in thickness, together with a water permeability of 5.1 Lm-2h-1bar-1 and a Na2SO4 rejection of 89.7%. Meanwhile, this membrane presented significantly higher rejection of EDCs (up to 99.7%) than that of polyamide membranes (up to 81.8%). Quartz crystal microbalance results revealed that the sorption amount of a model EDC, benzylparbaen, by TA-Fe3 layer was nearly two orders of magnitude less than that by polyamide, leading to reduced transmission and higher rejection. Further analysis of membrane revealed a much greater water/EDC selectivity of the TA-Fe3 membrane compared to the polyamide membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app