Add like
Add dislike
Add to saved papers

Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus.

Nanoscale 2019 Februrary 12
A novel type of chemically crosslinked liquid crystalline nanocomposite ionogel electrolyte based on poly(ionic liquid) (PIL) with superior ionic conductivity and high anisotropic conductivity was designed and synthesized using the in situ photopolymerization of sheared soft ionogels containing charged halloysite nanotubes (HNTs) and ionic liquid monomers. The oriented structure was investigated using scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS). The chemically crosslinked backbone of the PIL and the addition of HNTs endowed the flexible ionogels with a combined very high modulus (up to 26.7 MPa) and mechanical strength (up to 4.4 MPa). Crucially, the obtained ionogels exhibited high mechanical stability even at temperatures up to 200 °C. Remarkably, in terms of the conductivities, the resulting pre-sheared ionogels displayed superior room temperature ionic conductivity (up to 6 mS cm-1) and a very high conductivity anisotropy ratio (up to 1600), owing to the alignment of the HNTs with oppositely charged surfaces and the high ionic conductivity of the polyelectrolyte PILs. Furthermore, flexible solid-state supercapacitor devices based on the high ion-conductive nanocomposite ionogels were fabricated, which demonstrated high and temperature-dependent specific capacitance, and remarkable cycling stability and flexible performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app