Add like
Add dislike
Add to saved papers

In situ reversible color variation of a ready-made upconversion material using the designed component of a three-state fluorescence switching system.

Nanoscale 2019 Februrary 12
In recent years, upconversion materials have attracted considerable attention because of their unique physicochemical features. Numerous studies have focused on the synthesis of upconversion materials with different colors. However, an easier way to vary the upconversion colors without changing the materials' components has not been extensively studied. In this study, we realized the in situ color variation of the designed upconversion material with the help of a three-state fluorescence switching hybrid device. The device was composed of Prussian blue and upconversion materials; the former element functioned as a fluorescence resonance energy transfer acceptor and the latter acted as a donor. Smartly applying the RGB color model guaranteed multicolor of the device. Moreover, the highest fluorescence contrast of the three-state fluorescence switching system was 86% (larger than the result of a previous study), and the three-state reversibility was remarkable; this was probably owing to the unique layer-by-layer dripping/electrodepositing assembly method. To the best of our knowledge, the in situ reversible color variation of the ready-made upconversion material has been demonstrated for the first time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app