Add like
Add dislike
Add to saved papers

Phosphatidic acid governs natural egress in Toxoplasma gondii via a guanylate cyclase receptor platform.

Nature Microbiology 2019 Februrary 12
Toxoplasma gondii establishes a lifelong chronic infection in humans and animals1 . Host cell entry and egress are key steps in the lytic cycle of this obligate intracellular parasite, ensuring its survival and dissemination. Egress is temporally orchestrated, underpinned by the exocytosis of secretory organelles called micronemes. At any point during intracellular replication, deleterious environmental changes such as the loss of host cell integrity can trigger egress2 through the activation of the cyclic guanosine monophosphate-dependent protein kinase G3 . Notably, even in the absence of extrinsic signals, the parasites egress from infected cells in a coordinated manner after five to six cycles of endodyogeny multiplication. Here we show that diacylglycerol kinase 2 is secreted into the parasitophorous vacuole, where it produces phosphatidic acid. Phosphatidic acid acts as an intrinsic signal that elicits natural egress upstream of an atypical guanylate cyclase (GC), which is uniquely conserved in alveolates4 and ciliates5, and composed of a P4-ATPase and two GC catalytic domains. Assembly of GC at the plasma membrane depends on two associated cofactors - the cell division control 50.1 and a unique GC organizer. This study reveals the existence of a signalling platform that responds to an intrinsic lipid mediator and extrinsic signals to control programmed and induced egress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app