Add like
Add dislike
Add to saved papers

Novel small molecule decreases cell proliferation, migration, clone formation, and gene expression through ERK inhibition in MCF-7 and MDA-MB-231 breast cancer cell lines.

Anti-cancer Drugs 2019 Februrary 7
The Ras-Raf-MEK1/2-ERK1/2 pathway is an attractive target for the development of anticancer agents because of the high prevalence of ERK activation in human cancers. However, resistance is often developed despite initial clinical response, most likely because of activation of cross-talk pathways. In Research Genetic Cancer Center (RGCC), we are in the process of synthesizing a novel ERK inhibitor, targeting the final stage of the pathway, thus minimizing cross-talk. We have synthesized an intermediate molecule -RGCC416 - and tested its biological activity. MCF-7 and MDA-MB-231 cells were used. Cell viability was measured by crystal violet and cell proliferation by the methyl tetrazolium assay using various compound concentrations. Cell migration and colony formation were determined to assess the ability of invasion and single cancer cell growth, respectively. Expression of genes linked to MAPK/PI3K pathways was determined by PCR. ERK and phospho-ERK levels were determined in both the cytoplasm and the nucleus by western blot. It was found that although the compound did not affect viability, it significantly decreased cell proliferation, migration, and colony formation in both cell lines. In MDA-MB-231, this is possibly through retaining phospho-ERK to the cytoplasm, where it cannot activate cancer-associated genes. There was no difference in ERK levels in MCF-7 cells. This could be because of the different pathways that these cells utilize for survival. We have synthesized a molecule, which could be a promising ERK inhibitor, leading to possible novel treatment options for breast cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app