Add like
Add dislike
Add to saved papers

Experimental analysis of the quality of an implant embedded in the bone based on its mechanical parameters.

INTRODUCTION: We present a description of an experiment in which the parameters describing the quality of the mandrel embedding an implant into a bone were determined. A method was developed that allows, from outside a living organism, the strength of the mandrel of the implant in the bone tissue to be determined. Using the proposed technique, we investigated how the mechanical properties of the bone affect the quality of the implant mandrel embedding in the bone tissue.

MATERIALS AND METHODS: As part of the research work, we conducted 15 compression tests on previously prepared samples that reflected an uncemented endoprosthesis embedding in the proximal base of a femur bone.

RESULTS: The results of the research showed that the load applied is dispersed between the mandrel and the bone tissue. The mechanical stability of the embedding affects the mechanical properties of the bone. The experiment revealed the nature of the mechanical stability of the embedding in relation to the increasing contact surface area.

CONCLUSIONS: We observed a non-linear nature of dependences of bone density as the main parameter describing the properties of bone relative to the extent of loosening expressed in the form of the slip surface of the mandrel relative to the bone. The mechanical stability of the embedding is crucial in the initial phase of the implant healing because it eliminates the loosening of the mandrel embedding. It provides a guarantee that the specific geometry of the treated motion apparatus part will be preserved and lowers the risk of inflammatory conditions during the treatment process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app