Add like
Add dislike
Add to saved papers

In situ synthesis of sandwich MOFs on reduced graphene oxide for electrochemical sensing of dihydroxybenzene isomers.

Analyst 2019 Februrary 12
A novel type of sandwich MOF was successfully synthesized on reduced graphene oxide (denoted as M@Pt@M-rGO) by an in situ synthesis method. The obtained M@Pt@M-rGO possesses excellent electrochemical properties. The surface morphology and structure of M@Pt@M-rGO were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), etc. By using M@Pt@M-rGO, a novel electrochemical sensor was constructed and successfully used for the simultaneous and sensitive detection of three isomers: hydroquinone (HQ), catechol (CT) and resorcinol (RS), with wider linear ranges of concentrations of 0.05-200 μM, 0.1-160 μM and 0.4-300 μM and lower detection limits of 0.015 μM, 0.032 μM and 0.133 μM (S/N = 3) for HQ, CT and RS, respectively. Besides, the proposed electrochemical sensor showed excellent anti-interference capability, high stability, good reproducibility, and satisfactory recovery for determination of isomers in river and lake water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app